

Dnyanopasak Shikshan Mandal's

College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: B K KAJALE

Department: PHYSICS

Program: MSc FY Subject: PHYSICS

Course Code: PHY 101

Paper Title: Mathematical Methods in Physics (Core-1)

Unit	Unit	Topics	Unit-wise
Number	Name		Outcome
I	Vector	Linear dependence and	Will be able to
	Spaces	independence of vectors, Inner	solve problems in
	and	product, Schmidt's orthogonalization	physics using
	Matrices	method. Matrices – Inverse,	techniques of
		Orthogonal, Hermitian and unitary	matrices
		matrices, Transformation of vectors	
		and matrices, System of linear	
		equations, eigenvalues and	
		eigenvectors of square matrix,	
		diagonalisation of a matrix, rotation	
		matrix.	

II	Special	i) Legendre equation, Rodrigues	will be able to
	functions	formula for Pn(x), generation functions and recurrence relation	solve problems in
		Associated Legendre polynomial. ii) Bessel equation, Bessel function of first kind, generating functions and recurrence relation, Associated	pnysics, Engineering, Biophysics using techniques of
		Equation, generating function and recurrence relation for Hermite polynomial. iv) Leguerre equation, generating function and recurrence relation, Rodrigue formula, Associated Lagurre polynomials.	
111	Fourier Series and Integral Transform	Fourier series: General properties of Fourier series, Simple applications, properties of Fourier series, convergence, integration, differentiation. Fourier Transform, Laplace Transforms, Properties of Fourier and Laplace transforms (Linearity, first shifting and second shifting property), Fourier sine and cosine transforms, Fourier and Laplace transform of derivatives, elementary Laplace transform, Inverse Fourier and Laplace transforms, shifting theorm, step function, Solution of simple differential equation using Laplace Transform technique.	Will acquire skill to apply technique of integral transforms to solve problems in physics and similar subjects
IV	Complex	Definition of complex function,	Will acquire skill
	function	exponential function and properties,	to apply
	and	circular function and properties,	technique of
	Calculus	hyperbolic function and properties,	calculus of
	of	Inverse hyperbolic function,	complex function

Complex	logarithmic function, limit of a	to solve problems
function	complex function, continuity,	in physics and
	derivative (theorm), analytic	similar subjects
	functions, harmonic functions,	
	complex integration, Cauchy's	
	theorm Cauchy's integral formula,	
	Series of complex term-Taylor's	
	series, Laurentz series. Zeros of an	
	analytical function, Singularities of an	
	analytical function (isolated,	
	removable, poles and essential	
	singularity), Residue Theorm-	
	Calculus of residues.	

- 1. solve problems in physics using techniques of matrices
- 2. solve problems in physics, Engineering, Biophysics using techniques of special functions
- 3. apply technique of integral transforms to solve problems in physics and similar subjects
- 4. apply technique of calculus of complex function to solve problems in physics and similar subjects

Department: PHYSICS

Program: MSc FY **Subject**: PHYSICS

Course Code: PHY 102

Paper Title: Classical Mechanics (Core-2)

Unit	Unit Name	Topics	Unit-wise
Number			Outcome
I	Elementary	Review of Newtonian mechanics,	Will acquire the
	Principles	Inertial reference frame; Galilean	techniques of
		transformations; Motion of a	elementary
		charged particle in electromagnetic	principles of
		field; Conservative and non-	physics
		conservative forces; Mechanics of a	
		single particle; Mechanics of a	
		System of particles; Motion in a	
		resistive medium; Constraints and	
		its types; Generalized coordinates,	
		cyclic coordinates and degrees of	
		freedom; Virtual displacement and	
		virtual work; D' Alembert's	
		principle.	
II	Lagrangian	Lagrangian equation of motion	will be able to
	Formulation	from D' Alembert's principle,	solve problems in
		procedure for formation of	physics,
		Lagrange's equation; Variation	Engineering
		technique; Generalized momenta and cyclic coordinates; Kinetic	using techniques

		energy in terms of generalized	of Lagrangian
		coordinates; Jacobi integral; Jacobi	formulae
		integral in terms of kinetic energy;	
		Rayleigh's dissipation function;	
		Gauge transformation for	
		Lagrangian; Symmetry properties	
		and conservation laws; Invariance	
		of Lagrangian equations under	
		Galilean transformation; Variational	
		principle; Derivation of Lagrangian	
		equation from Variational principle.	
	•••	· ·	
111	Formulation	Hamiltonian Formulation Transformation from Lagrangian to Hamiltonian; Derivation of	to solve
	Eorco	Hamiltonian equations of motion	Problems in Hamiltonian
	FUICE	from Hamiltonian principle; Δ	
		Variation technique; Principle of	ciassical
		least action; Canonical	control force
		transformation; Condition for a	
		Poisson brackets: Properties of	problems
		Poisson's bracket: Poisson's bracket	
		of Canonical variables; Jacobi	
		identity; Poisson's theorem;	
		Invariance of Poisson's bracket	
		under canonical transformation;	
		Hamilton-Jacobi method.	
		Central Force	
		Reduction of two-body problem	
		motion under Central force.	
		equation of Orbit; inverse square	
		law; Kepler's laws of planetary	
		motion; Virial theorem; Scattering	

		in a central force field; Rutherford	
		scattering cross section.	
IV	Rigid body	Rigid body dynamics	Will acquire skill
	dynamics	Coordinate systems; Euler's angles;	to solve
	and small	Angular momentum and inertia	problems in rigid
	oscillations	tensor; Principle axes; Components	body dynamics
		of angular velocity; Rotational	and small
		kinetic energy of a body; Euler's	oscillations
		Torque free motion of a rigid body,	
		Small oscillations	
		Potential energy and equilibrium:	
		Stable and unstable equilibriums;	
		Small oscillations in a system with	
		one degree of freedom; small	
		oscillations in a system with more	
		than one degree of freedom;	
		Normal coordinates; Normal modes	
		and normal frequencies of	
		vibration	

- 1. acquire the techniques of elementary principles of physics
- 2. solve problems in physics, Engineering using techniques of Lagrangian formulae
- 3. acquire skill to solve problems in Hamiltonian classical mechanics& central force problems
- 4. acquire skill to solve problems in rigid body dynamics and small oscillations

Department: PHYSICS

Program: MSc FY Subject: PHYSICS

Course Code: PHY 103

Paper Title: Atomic and Molecular Physics (Core-3)

Unit	Unit Name	Topics	Unit-wise
Number			Outcome
Unit Number I	Unit Name Atomic structure and atomic spectra	Topics Spectra of Monovalent atoms Quantum mechanical results of hydrogen atom, Atomic spectra of Hydrogen, Quantum numbers and their role, atomic orbitals, orbital and spin angular momenta., spin orbit interaction, vector atom model, spectroscopic terms and their notations, Fine structure in hydrogen energy levels, spectra of alkali elements, different series in alkali spectra. The doublet fine structure Spectra of Divalent atoms Coupling scheme, L-S and j-j coupling, Building up principle: the Aufbau principle, Equivalent and non-equivalent electrons: Pauli's exclusion principle, Hund's rules. spectral terms, Breit's scheme Magnetic and electric field effects Normal and anomalous Zeeman	Unit-wise Outcome Will be able to understand and explain spectra of monovalent and divalent atoms and can understand LS and JJ coupling in case of two valance electron atoms and the origin of spin-orbit interaction
		Magnetic and electric field effects Normal and anomalous Zeeman effect, Lande g factor, Interaction	
		energies's, Paschen Back effect, interaction energy, co-relation between Zeeman and Paschen Back effects, Stark effect with weak and strong field, Hyperfine structure	

II	Microwave	Preliminaries, Types of molecules	will be able to
	Spectroscopy	Diatomic molecules -Rotational	study and
	of Molecules	spectra of diatomic molecule, Rigid	analvze
		rotator and Non-rigid rotator,	microwave
		energy levels, selection rules and	spectra of
		resulting spectra, the effect of	spectra or
		isotopic substitution, Intensities of	molecules
		spectral lines in rotational spectra,	
		Polyatomic molecules - Linear	
		molecules, determination of inter-	
		atomic distances using isotopic	
		substitution, Symmetric top	
		molecules: calculation of energy,	
		selection rule, spectra. Microwave	
		spectrometer, problem solving	
111	Infrared and	Vibrational spectroscopy of	Will be able to
	Electronic	diatomic molecules: Vibrational	study and
	spectroscopy	energy of diatomic molecule, the	analyze
	of molecules	simple harmonic oscillator model	vibrational
		energy The anharmonic oscillator,	spectra of
		Morse potential curve, Energies,	diatomic and
		selection rules, spectra,	
		trequencies of fundamental and	polyatomic
		overtones and hot band The	

		diatomic vibrating rotator with and	molecules and
		without Born-Oppenheimer	electronic
		approximation, energy levels,	spectra of
		selection rules, P, Q and R	diatomic
		branches.	molecules
		Polyatomic molecules:	molecules
		Fundamental vibrations and their	
		symmetry, CO2 and H2O	
		molecules, techniques and	
		instrumentations, IR spectrometer	
		Electronic spectra of diatomic	
		molecules	
		Born-Oppenneimer approximation,	
		Vibrational coarse structure of	
		electronic bands, progressions and	
		The hand head formation and	
		shading of hands Franck Condon	
		principle, dissociation operay and	
		dissociation products	
IV	Raman	Introduction quantum theory of	Will be able to
	spectroscopy	Raman Effect, classical theory of	study and
	spectroscopy	Raman effect, molecular	study and
	of molecules	Polarizability,	analyze pure and
		Pure rotational Raman spectra	vibrational
		linear diatomic molecules,	Raman spectra
		intensity alteration in Raman	of various
		spectra of diatomic molecules,	molecules
		Raman spectra of symmetric top	
		molecule, R and S branches in	
		Raman spectra	
		Vibrational Raman spectra	
		Raman activity of vibrations (H2O	
		and CO2 molecules), rule of	
		mutual exclusion, nature of	
		polarized light, structure	
		determination from Raman and	

infra-red spectroscopy,	
Experimental setup for Raman	
spectroscopy	

- 1. Will be able to understand and explain spectra of monovalent and divalent atoms and can understand LS and JJ coupling in case of two valance electron atoms and the origin of spin-orbit interaction
- 2. study and analyze microwave spectra of molecules
- 3. study and analyze vibrational spectra of diatomic and polyatomic molecules and electronic spectra of diatomic
- 4. study and analyze pure and vibrational Raman spectra of various molecules **Signature of Teacher**

Name of Teacher: S R MAGAR

Department: PHYSICS

Program: MSc FY Subject: PHYSICS

Course Code: PHY 104

Paper Title: Electronic Devices and Applications (Core-4)

Unit	Unit Name	Topics	Unit-wise
Number			Outcome
I	Semiconductor	Fundamentals of semiconductor:	Will be able to
	Devices	Classification based on band gap	explain working
		semiconductor), n-type and p-	applications of
		type semiconductors,	semiconductor
		understanding p-n junction	devices
		Devices: Structure and	
		characteristics of diodes, bipolar	
		transistors, field effect	
		transistor, metal oxide field	
		effect transistor, uni-junction	
		transistors and silicon control	
		rectifier ,Applications of	

		semiconductor devices as amplifiers and oscillators	
11	Photonic Devices	Basics of photonic devices: Direct and Indirect band gap of semiconductor, radiative transitions, photoconductors ,Photodiodes, Phototransistor and Photo-detectors (construction, working and application) , Light emitting diodes (Visible and Infrared) ,Solar cells (Solar radiations and ideal conversion efficiency P-N junction solar cell, spectral response, I-V characteristics)	will be able to explain working principle and applications of photonic devices
	Operational Amplifier & Its Applications	OP-AMP parameters, ideal OP- AMP, differential amplifier , OP- AMP as an 1) Inverting amplifier 2) Non –Inverting amplifier 3) Adder 4) Subtractor 5) Differentiator 6) Integrator 6) Schmitt trigger 7) Comparator, Applications of OP-AMP as active filters: First order High pass, Low Pass & Band Pass Filters	Will be able to working principle and applications of operational amplifiers
IV	Digital Electronics	Number system: Binary, Decimal & Hexadecimal no. system and its algebra, Logic devices: AND, OR, NOR, NAND, XOR (Symbols, working and truth tables) ,Registers: Flip–flop-R-S, J-K, T, D (logic symbols, working and	Will be able to explain construction, working principle and applications

	truth tables) ,Shift registers: 4-	of various digital
	bit left to right and right to left ,	circuits
	Digital counters: Synchronous	
	and asynchronous,	
	Encoder and decoder: 1:4 and	
	4:19 (logical diagram and truth	
	table) ,Multiplexer and	
	Demultiplexer: Logical diagram	
	and truth table ,DAC: R-2R	
	ladder network ,ADC using	
	comparators , Monostable and	
	astable multivibrators using	
	IC555, Application of Digital	
	devices: Microprocessor	

- 1. explain working principle and applications of semiconductor devices
- 2. explain working principle and applications of photonic devices
- 3. working principle and applications of operational amplifiers
- 4. explain construction, working principle and applications of various digital circuits

Name of Teacher: P. S. KACHAVE

Department: PHYSICS

Program: M. Sc FY Subject: PHYSICS

Course Code: PHY 201

Paper Title: Quantum Mechanics (Core-7)

Unit	Unit	Topics	Unit-wise
Numb	Name		Outcome
er			
I		Derivation of time dependent and time independent Schrodinger equation, Physical significance of wave function, Quantum numbers, Postulates of Quantum Mechanics, Commutation relations for position and momentum operator, Dirac Delta function and its properties, Ket and Bra notations, Completeness of eigen functions, Matrix representation of an operator, Unitary Transformation	Will be able to understand fundamentals of quantum mechanics
11	Angular Moment um	Angular momentum and rotations, Orbital angular momentum, Spin angular momentum, Rotational symmetry and conservation of angular momentum, Commutation relations for Spin, orbital and total angular momentum, Ladder operators, eigen values of the angular momentum operators; L2, Lz, J2, Jz, J+ and J-, Reflection invariance and Parity, Addition of two angular momenta– Clebsch –Gorden Coefficient , calculation of C.G.coefficient	Will be able to understand and apply principle of angular momentum to solve microscopic problems

III	Approxi	(a) Time independent Perturbation	Will be able to
	mation	Theory	understand how
	mation methods	Stationary perturbation theory, Non- degenerate case; First order correction to energy, First order correction to wave function, Second order perturbation, and corrections, Stark effect in the ground state of hydrogen atom, Time independent perturbation theory: degenerate case, application for the He atom, degenerate case – Stark effect.(b) Time dependent perturbation Theory : Zero order perturbation, First order perturbation, second order perturbation, Fermi Golden rule, adiabatic and sudden approximation. (c) Variational Method : The basic Principle, expectation value of energy in ground state, application to excited state, application to two electrons atom, (d) WKB approximation : The classical limit, One dimensional case, turning point, connection formulae, the application to two approximates and successing the second	understand how to apply various approximation methods to microscopic physics
		State	
IV	Collision in 3-d and Scatterin g	Laboratory and Centre of Mass reference frames, scattering amplitude, differential scattering cross section, total scattering cross section, Asymptotic form of scattering states, Relation between angles and cross sections in the laboratory and center of mass systems, Scattering by spherically symmetric potentials, Integral equation of scattering, The Born approximation,	Will be able to workout various problems of collision in 3d and scattering

Partial Waves and Phase shifts,	
Scattering by a perfectly rigid sphere	
and by square well potential. Complex	
potential and absorption. Identical	
particles symmetric and asymmetric	
wave functions and their construction	
for N particle system. Slater's	
determinant. Collicion of identical	
determinant, consion of identical	
particles (Mathematical derivations are	
not	
expected)	

- 1. understand fundamentals of quantum mechanics
- 2. understand and apply principle of angular momentum to solve microscopic problems
- 3. understand how to apply various approximation methods to microscopic physics
- 4. workout various problems of collision in 3d and scattering

Name of Teacher: B K KAJALE

Department: PHYSICS

Program: M. Sc FY Su

Subject: PHYSICS

Course Code: PHY 202

Paper Title: Statistical Mechanics (Core-8)

Unit	Unit	Topics	Unit-wise
Numb	Name		Outcome
er			
l	Classical Statistics	Fundamentals: Foundation of statistical mechanics, specification of states of a system, contact between statistics and thermodynamics, classical ideal gas, entropy of mixing and Gibb's paradox Ensembles: Micro canonical ensemble; phase space; trajectories and density of states; Liouville's theorem; Canonical ensemble and Grand Canonical ensemble; partition function, Calculation of statistical quantities, Energy and density fluctuations. Maxwell-Boltzmann System: Maxwell- Boltzmann distribution formula; evaluation of constants 🗊 and I, Maxwell-Boltzmann velocity distribution formula;	Will be able to understand fundamentals of classical statistics

II	Quantum	Density matrix, statistics of ensembles,	Will be able to
	Statistics	statistics of indistinguishable particles Fermi-Dirac Gas:- Fermi Dirac distribution formula, ideal F.D. gas,	understand and apply FD quantum statistics
		Weakly degenerate Fermi gas; Strongly degenerate Fermi gas; thermodynamic functions of degenerate F.D. gas, Thermionic emission; electron gas, Free electron model, Photo electric emission, Pauli's theory of Para magnetism, Statistical equilibrium in a white dwarf star	

	Bose-Einstein Gas :-Bose-Einstein distribution formula, Ideal B.E. gas, Black body radiation, Photon statistics, Phonon statistics, B.E. condensation, liquid helium, London Theory, Tisza's two fluid model, Landau's theory.	Will be able to understand and apply BE quantum statistics
IV	Cluster expansion for a classical gas, Virial equation of state, Ising model, mean field theories, Ising model in one, two, three dimensions, exact solution of one dimension. Phase Transitions: Landau's theory of phase transition, Critical indices, Fluctuations and transport phenomena, Brownian motion, Langevin's theory, fluctuation dissipation theorem, The Fokker-Plank equation.	Will be able to understand various concepts of classical gas and phase transitions

- 1. understand fundamentals of classical statistics
- 2. Will be able to understand and apply FD quantum statistics and BE quantum statistics
- 3. understand various concepts of classical gas and phase transitions

Department: PHYSICS

Program: M. Sc FY Subject: PHYSICS

Course Code: PHY 203

Paper Title: Numerical Techniques in Physics (Core-9)

Unit	Unit	Topics	Unit-wise
Numb	Name		Outcome
er			
I		Curve fitting and interpolation: The Principle of Least squares, fitting a straight line, fitting a parabola, fitting an exponential curve, fitting curve of the form y=axb, fitting through a polynomial, Cubic spline fitting, Linear interpolation, difference schemes, Newton's forward and backward interpolation formula. Roots of equation: Polynomial and transcendental equations, limits for the roots of polynomial equation. Bisectional method, false position method, Newton Raphson method, direct substitution method, synthetic division, complex roots.	Will acquire the skill of curve fitting & interpolation and can find roots of equations employing various method
11		Numerical integration: Newton cotes formula, trapezoidal rule, Simpson's one third rule, Simpson's three eight rule, Gauss quadratics method, Monte Carlo method. Solution of differential equation: Taylor series method, Euler method, Runge Kutta method, predictor- corrector method	Will be able to solve problems of numerical integration and can solve differential equations

	Solution of simultaneous equation: Gaussian elimination method, pivotal condensation method, Gauss-Jordan elimination method, Gauss-Seidel iteration method, Gauss-Jordan matrix inversion method, Gaussian-elimination matrix inversion method Eigen values and eigenvectors of a matrix:	Will be able to find solutions of simultaneous and partial differential equations and can find eigenvalues and eigenvectors of a matrix
	Computation of real eigen values and corresponding eigenvectors of a symmetric matrix, power method and inverse power method. Partial differential equations: Difference equation method over a rectangular domain for solving elliptic, parabolic and hyperbolic partial differential equation	
IV	 C- Programming Elementary information about digital computer principles, compliers, interpreters, and operating systems, C programming, flow charts, integer and floating point arithmetic, expression, build in functions, executable and non-executable statements, assignment, control and input-output elements, user defined functions, operation with files: pointers Random numbers: Random numbers, Random walk, method of importance sampling. 	Will be able to write simple C programs and can understand random numbers

- 1. acquire the skill of curve fitting & interpolation and can find roots of equations employing various method
- 2. solve problems of numerical integration and can solve differential equations
- 3. find solutions of simultaneous and partial differential equations and can find eigenvalues and eigenvectors of a matrix
- 4. write simple C programs and can understand random numbers

Signature of Teacher

Name of Teacher: B K KAJALE

Department: PHYSICS

Program: M. Sc FY Subject: PHYSICS

Course Code: PHY 204

Paper Title: Condensed Matter Physics (Core-10)

Unit Numb er	Unit Name	Topics	Unit-wise Outcome
I	Crystal structure , X-ray diffractio n and	Crystal structure: Basic of crystal structure, Bravais lattices in two and three dimension, Some important crystal structure: Simple cubic (SC), Body centered cubic (BCC), Face	Will be able to understand crystal structures and x- ray diffraction

	Crystal	centered cubic (FCC), Hexagonal close	
	imperfect	packed (HCP), NaCl and diamond	
	ions	structure, Miller indices and spacing	
		between set of a crystal planes	
		PRA-ray diffraction and Reciprocal	
		lattice:	
		Generation and interaction of X-ray,	
		Braggs law and experimental methods:	
		Laue	
		method, Rotating crystal method,	
		powered method, Reciprocal lattice and	
		diffraction condition, Atomic scattering	
		factor and Geometrical structure factor	
		Prystal Imperfections: Point defects,	
		line defects and Surface defects,	
		Energies of dislocations	
П	Band	Band theory: Electron motion in crystal	Will be able to
	theory	(one dimensional), Bloch theorem and	understand band
	and	implementation in Kroning-penny	theory of solids
	Fermi	model ,Concept of effective mass,	
	Surface	Concept of holes	
	Junace	,Metals, insulators and semiconductor,	
		Other model and methods	
		Pressure Surface: Fermi surface and	
		Brillouin zones, Experimental	
		determination of Fermi surface	
111	Semicon	Semiconductor: Basics of	Will be able to
	ducting,	semiconductors: Carrier concentration	understand
	Dielectric	in semiconductors and impurity states,	semiconducting,
	and	Fermi level position as a function of	dielectric and
	optical	charge carrier concentration	optical properties
	nronertie	semiconductor, optical methods to	of solids
	r opertie	determine the forbidden gap, Direct	
	5 01	and indirect	
	material	band gap, I ransport properties in	
		semiconductor (resistivity, carrier	

	concentration, mobility temperature dependence, Hall Effect) Dielectric and optical property of material The dielectric constant and polarizability, Sources of polarizability, Dipolar polarizability and Dipolar dispersion in solids, Ionic polarizability, Electronic polarizability, Piezoelectricity and Ferro electricity	
Supercon ductivity and Magnetic propertie s of materials	Superconductivity: Introduction to superconductivity, Meissner effect, Critical temperature and persistent current,Type-1 & Type-II superconductors,The London theory, BCS theory, Cooper pair Flux quantization Magnetic properties: Origin of Magnetic properties of materials, Magnetic susceptibility, Curie Weiss law for susceptibility, ,Classification of magnetic materials,Weiss molecular field theory of ferromagnetism, Heisenberg model,Ferromagnetic domain and Hysteresis, Closure domains,Exchange interactions in Ferromagnets,The Bloch wall and Bloch wall energy, Antiferromagetism: two sublattice model, Neel temperature, Susceptibility below Neel temperature, Ferrimagnetism: Structure of ferrites, Spin arrangement in FerriteSpin waves and magnons.	Will be able to understand superconductivity and magnetic properties of materials

- 1. understand crystal structures and x-ray diffraction
- 2. understand band theory of solids
- 3. understand semiconducting, dielectric and optical properties of solids
- 4. understand superconductivity and magnetic properties of materials

Signature of Teacher

Name of Teacher: P S KACHAVE

Department: PHYSICS

Program: M. Sc SY

Subject: PHYSICS

Course Code: PH-15

Paper Title: Electrodynamics

Unit	Unit	Topics	Unit-wise
Numb	Name		Outcome
er			
I	Maxwell'	Maxwell's equations and their physical	Will be able to
	S	significance. Equation of continuity and	understand and
	equation	relaxation time, Vector and scalar	
		potentials, Lorentz and Coulomb gauge,	

	s and	electromagnetic energy and Poynting's	apply Maxwell's
	Electrom	theorem, electromagnetic wave	equations
	agnetic	equations in free space, their plane	•
	waves	wave solutions, waves in conducting	
	waves	medium: skin depth, waves in ionized	
		medium (ionospheric propagation)	
		polarization of EM waves. Concept of	
		radiation pressure	
II	Electrom	Reflection and refraction of plane	Will acquire
	agnetic	electromagnetic waves at a plane	knowledge of
	waves in	interface: normal incidence, oblique	behaviour of EM
	bounded	incidence, Fressnel's equations, and	waves in bounded
	media	Brewster's angle. Total internal	media
	meana	reflection. Reflection and refraction	media
		from metallic surfaces, Electromagnetic	
		wave propagation between two parallel	
		conducting plates, waves in hollow	
		conductors, Rectangular wave guides –	
		IE and IM modes.	
111	Radiation	Concept of retarded potential, The	Will be able to
	s from	Lienard-Wiechert potentials, Fields	understand how
	moving	produced by moving charges, radiations	radiations emit
	charges	from an accelerated charged particle at	from moving
		low velocities, radiations from a	charges
		charged particles with co-linear velocity	0
		and acceleration, Radiations from an	
		Accelerated charged particle at low	
		formula. Radiations from an accolorated	
		charged particle at relativistic velocities	
		in circular orbitsrolativistic	
		generalization of Larmor Formula	
IV.	Radiating	Multipole expansion of EM fields	Will be able to
	Sustains	Electric dinole radiations field due to	will be able to
	Systems	oscillating electric dinole magnetic	understand the
		dipole radiations electric quadrupole	process of
		aipole radiations, electric quadi upole	radiation from

		radiation, fields due to linear, centre- fed antenna, simple array of antennas.	various system	radia S	ting
V	Relativist ic Electrody namics	Galilean transformations, Lorentz transformations and basic kinematical results of special relativity (length contraction, time dilation, addition of velocities, charge invariance, field transformation, etc), relativistic momentum and energy of a particle, mathematical properties of space-time in special relativity	Will b unders applica relativit electro	e able and tion y dynamic	to of to s

- 1. understand and apply Maxwell's equations
- 2. acquire knowledge of behaviour of EM waves in bounded media
- 3. understand how radiations emit from moving charges
- 4. understand the process of radiation from various radiating systems
- 5. understand application of relativity to electrodynamics

Department: PHYSICS

Program: M. Sc SYSubject: PHYSICSCourse Code: PH-16

Paper Title: Nuclear and Particle Physics

Unit	Unit	Topics	Unit-wise
Numb	Name		Outcome
er			
1	Basic Nuclear propertie s	Nuclear size & its determination, nuclear radii by Rutherford scattering, electron scattering & mirror nuclei method, nuclear quantum numbers, angular Momentum, nuclear dipole moment, electric quadruple moment.	Will be able to understand basic nuclear properties Will be able to
11	n of nuclear radiation with matter	rays with matter, range, straggling, stopping power, ionization chamber, proportional counter, GM counter, scintillation detector, semiconductor detector.	understand interaction of nuclear radiation with matter
III	Nuclear forces and Nuclear Models	Elements of two body problem, charge independence & charge symmetry of nuclear forces, Meson theory of nuclear forces. Nuclear Models: B.E., Semi empirical mass formula & applications, nuclear shell model, liquid drop model collective model, collective model, Fermi gas model.	Will be able to understand various nuclear models and nuclear forces

IV	Nuclear	Radioactive decay, laws of successive	Will	be	able	to
	decay &	transformation, dosemetry nuclear	unde	understand		
	Reactions	reactions, fission & fusion. β – decay,	nuclear reaction and nuclear decay		ons	
		three forms of β - decay, Fermi theory			ay	
		of β - decay, kurle plot, selection rule,				
		non conservation of parity in β decay				
V	Elementa	Weak, strong & electromagnetic	Will	be	able	to
	ry	interaction, classification of elementary	acqu	ire k	nowle	dge
	particles	particles, conservation laws, quark	of	el	ement	ary
		theory.	parti	cles		

- 1. understand basic nuclear properties
- 2. understand interaction of nuclear radiation with matter
- 3. understand various nuclear models and nuclear forces
- 4. understand nuclear reactions and nuclear decay
- 5. acquire knowledge of elementary particles

Department: PHYSICS

Program: MSc SY Subject: PHYSICS

Course Code: PH-17

Paper Title: Basics of Laser and Devices

Unit	Unit	Topics	Unit-wise
Number	Name		Outcome
I		Properties of Lasers, Intensity, Monochromaticity, Directionality and coherence, Einstein's coefficients, Momentum transfer, Life time and possibility of amplification.	Will be able to understand properties of laser
II		Concepts of waves and interference, Temporal and spatial coherence, Coherence of the field and size of the source, Coherence and monochromaticity, Shape and width of spectral lines, Line broadening mechanism, Intrinsic broadening, collision broadening, Doppler broadening.	will be able to understand various characteristics of laser
		Basic principles of lasers, population inversion, Laser pumping, Two level and three level pumping, Vibrational modes and mode density of resonator, Open and confocal resonator.	Will be able to understand the process of production of laser

P	Ruby laser, Three level system and itspumping power, Nd : YAG and Nd:Glass laser ,its energy level diagramand salient features.He-Ne lasers: Energy level diagram,construction and salient features ofthe He-Ne laser device,He-Cd and He-Sc laser: Energy leveldescription and salient features,Molecular gas laser-CO2 gas laser,Energy level scheme and generalfeatures.	Will be able to understand the lasers such as RUBY, He-Ne, He- Cd and He-Sc etc
---	---	---

V	Nonlinear optics, Harmonic	Will be able to
	generation, Phase matching, Optical	understand
	mixing parametric generation of light	applications of
	Applications of Lasers: Applications of	lasers
	lasers in (i) Communication (ii)	
	Industry (iii) Medicine (iv) Biology (v)	
	Astronomy.	

- 1. understand properties of laser
- 2. understand various characteristics of laser
- 3. understand the process of production of laser
- 4. understand the lasers such as RUBY, He-Ne, He-Cd and He-Sc etc
- 5. understand applications of lasers

Department: PHYSICS

Program: MSc SY Subject: PHYSICS

Course Code: PH-18B

Paper Title: Materials Science

Unit	Unit Name	Topics	Unit-wise
Number			Outcome
	Types of Materials and Glass	Materials Science: Introduction, Importance of materials, Types of materials, Typical materials behaviour, significant properties, Applications. Glass: Types of glasses, Glass Manufacturing process, Ceramics: Types of ceramics, Processing ceramics, Concrete: properties of concretes, Constituents of concretes, Constituents of concretes (Cement, Aggregate, Water, Admixtures), Characteristic of good concrete, Classification of concrete, properties of cement concrete, water proof concrete, R.C.C (properties, advantages and disadvantages, uses), Adhesives, abrasives, Application of concretes.	Will be able to understand various types of materials including glass
II	Magnetic materials	Terms related to Magnetic Materials, origin of magnetism, Classification of magnetic materials, Magnetic Domains, Magnetization, Magnetic anisotropy, Losses in magnetic materials, Factors effecting permeability and Hysteresis loss, soft and hard magnetic materials, Ferro fluids.	will be able to understand thoroughly the magnetic materials

	Dielectric	Dielectric as an electric field	Will be able to
	materials	medium, Leakage currents,	understand
	and	Dielectric losses, Breakdown	Dielectric and
		voltage and Dielectric strength,	
	Ferroelectric	break down in solid dielectrics,	ferroelectric
	Materials:	liquid dielectrics, Gases as	materials
		dielectrics, polarization, Electrical	
		conductivity in solid liquid and	
		gaseous dielectrics. Applications of	
		dielectric materials	
		Common ferroelectric materials,	
		Properties of ferroelectric	
		materials in static field,	
		spontaneous polarization, causes	
		for existence of curie temperature,	
		application of ferroelectric	
		materials. Antiferroelectric	
		materials, piezoelectric materials,	
		pyroelectric materials	
IV	Bio	General aspects of good timber,	Will be able to
	Materials	Advantages and disadvantages of	understand the
		Timber, Uses of timber, Defects in	biomaterials
		timber, seasoning of timber, Decay	
		of timber, Testing timber. Play-	
		wood, Lamin board, Black board,	
		Fiber board, Hard Board.	
V	Materials	Solid State Reactions: general	Will be able to
	Synthesis	principles, processes of the	learn synthesis of
		reactions between solids,	various materials
		precursor, solution and gel	
		methods, sealed tubes and special	
		atmospheres, solution and	
		hydrothermal methods, phase	
		diagram and synthesis. Low	
		temperature reactions,	
		intercalation in layer structures,	
		insertion compounds of metal	
		oxides, ion exchange methods	
		Synthesis by different wet chemical	
		techniques viz., sol-gel,	
		combustion, emulsion and polyol	

methods, Self-propagation	
combustion reaction, precursor	
dependent process, Microwave	
assisted process, Hydrothermal	
bomb calorimeter- hydrothermal	
and solvo-thermal process,	
Interfacial growth materials	
between the two immiscible	
phases,	

- 1. understand various types of materials including glass
- 2. understand thoroughly the magnetic materials
- 3. understand Dielectric and ferroelectric materials
- 4. understand the biomaterials
- 5. learn synthesis of various materials

Department: PHYSICS

Program: MSc SY Subject: PHYSICS

Course Code: PH-22

Paper Title: Fiber Optics and Optical fiber Communication

Unit	Unit Name	Topics	Unit-wise
Number			Outcome
I	Ray theory of transmission and preparation of optical fibers		Will be able to understand various types of materials including glass
11	Magnetic materials	Terms related to Magnetic Materials, origin of magnetism, Classification of magnetic materials, Magnetic Domains, Magnetization, Magnetic anisotropy, Losses in magnetic materials, Factors effecting permeability and Hysteresis loss, soft and hard magnetic materials, Ferro fluids.	will be able to understand thoroughly the magnetic materials
	Dielectric materials and Ferroelectric Materials:	Dielectric as an electric field medium, Leakage currents, Dielectric losses, Breakdown voltage and Dielectric strength, break down in solid dielectrics, liquid dielectrics, Gases as dielectrics, polarization, Electrical conductivity in solid liquid and gaseous dielectrics. Applications of dielectric materials	Will be able to understand Dielectric and ferroelectric materials

		Common ferroelectric materials,	
		Properties of ferroelectric	
		materials in static field,	
		spontaneous polarization, causes	
		for existence of curie temperature,	
		application of ferroelectric	
		materials. Antiferroelectric	
		materials, piezoelectric materials,	
		pyroelectric materials	
IV	Bio	General aspects of good timber,	Will be able to
	Materials	Advantages and disadvantages of	understand the
		Timber, Uses of timber, Defects in	hiomaterials
		timber, seasoning of timber, Decay	biomaterials
		of timber, Testing timber. Play-	
		wood, Lamin board, Black board,	
		Fiber board, Hard Board.	
V	Materials	Solid State Reactions: general	Will be able to
	Synthesis	principles, processes of the	learn synthesis of
		reactions between solids,	various materials
		precursor, solution and gel	
		methods, sealed tubes and special	
		atmospheres, solution and	
		hydrothermal methods, phase	
		diagram and synthesis. Low	
		temperature reactions,	
		intercalation in layer structures,	
		insertion compounds of metal	
		oxides, ion exchange methods	
		Synthesis by different wet chemical	
		techniques viz., sol-gel,	
		combustion, emulsion and polyol	
		methods, Self-propagation	
		combustion reaction, precursor	
		dependent process, Microwave	
		assisted process, Hydrothermal	
		bomb calorimeter- hydrothermal	
		and solvo-thermal process,	

	Interfacial growth materials	
	phases,	

- 1. understand various types of materials including glass
- 2. understand thoroughly the magnetic materials
- 3. understand Dielectric and ferroelectric materials
- 4. understand the biomaterials
- 5. learn synthesis of various materials

Signature of Teacher

Name of Teacher: B K KAJALE

Department: PHYSICS

Program: M. Sc SY Subject: PHYSICS Co	ourse Code: PH-23
---------------------------------------	-------------------

Paper Title: Microwaves and Measurements

Unit Numb er	Unit Name	Topics	Unit-wise Outcome
I	Microwa ve Fundame ntals	Microwave frequency spectrum, Types and characteristics of transmission line, Transmission line equation solution, Reflection coefficient and transmission coefficient, Standing wave and standing wave ratio, Line impedance and admittance, Smith chart.	Will be able to understand microwave fundamentals
11	Microwa ve	Microwave Passive Devices Rectangular wave guide, Circular wave guide, Microwave cavities, Microwave hybrid circuit, Directional coupler,	Will be able to understand working of

	Passive Devices	Circulators and ferrit devices, Attenuators, Scattering matrix, Isolators	microwave bench components
III	Microwa ve Active Devices	Klystron, Reflex Klystron, Velocity modulation, Basic principle of magnetron, Principles and operations of magnetrons and traveling wave tube, Transfer electron devices, Gunn diode, Pin diode	Will be able to understand working principle of microwave active components
IV	Microwa ve Measure ments	Attenuation measurement, Frequency measurement, Power measurement, Reflection coefficient and VSWR measurement, Scattering measurement. Microwave detection, Point contact diode, Schottly barrier diode, Impedance measurement using smith chart.	Will be able to understand how to do various microwave measurements
V	Microwa ve Applicati ons	Antenna fundamental, Microwave antennas, Antenna basic, Power received from an antenna, Radiation pattern, Radiation resistance, Efficiency, Directivity and gain, Antenna types, Rectangular horn antennas, H and E plane Horn antennas, Pyramidal Horn antenna, Parabolic reflector antenna. Radar system, Basic radar system, Radar range, Moving target indicator, Time domain reflectometry, Network analyzer, Microwave dielectric measurement techniques.	Will be able to understand and explain microwave applications

- 1. understand microwave fundamentals
- 2. understand working of microwave bench components
- 3. understand working principle of microwave active components
- 4. understand how to do various microwave measurements

5. understand and explain microwave applications

Signature of Teacher

Name of Teacher: B K KAJALE

Department: PHYSICS

Program: M. Sc SY

Subject: PHYSICS

Course Code: PH-24

Paper Title: Microprocessors and Microcontrollers

Unit	Unit	Topics	Unit-wise
Numb	Name		Outcome
er			
I	Architect	Intel 8085- Block diagram, ALU, Timing	Will be able to
	ure of	and control unit, Registers, Data and	understand
	Micropro	address bus, Pin configuration,	architecture of
	cessor	Fetch operation Execute cycle	microprocessor
	8085	Machine cycle and state, Instructions	8085
		and data flow, Timing diagram, Memory	
		read, I/O read, Memory write, I/O write	
II	Program	Introduction, Instruction set for 8085,	Will be able to
	ming of	Programming of 8085, Assembly	construct simple
	Micropro	Ianguage programming (Data Transfer,	(ALP) programmes
	cessor	group) Programmed data transfer	for microprocessor
	8085 and	Synchronous, Asynchronous and	8085
	Data	interrupt drivers modes, DMA, Serial	
	Transfer	data transfer.	
	Techniqu		
	es		

III	Advance d Micropro cessors	Architecture of 8086, Pin diagram and pin function, Register organization, Minimum and Maximum mode of 8086, Microprocessor 80286, 80386	Will be able to understand outline of architecture of advanced microprocessors
IV	Micro- controlle r 8051	Introduction to 8 - bit micro-controller, Architecture of 8051 signal description of 8051, Register set of 8051, Important operational features of 8051, Memory and I/O addressing by 8051, Interrupts of 8051, Instructions set of 8051, programming of 8051 (Simple Arithmetic and Logical programs).	Will be able to understand the architecture of microcontroller 8051 and can write simple programmes
V	16 bit Micro- controlle r and Embedde d Controlle r:	Introduction, Architecture of 16 bit micro-controller (MCS-96 or 80196), General features of 80196, Register set of 80196, I/O processor, UPI 452 (Universal Peripheral Interface), Intel 80960 (block Diagram and its description only).	Will be able to understand architecture of 16 bit microcontroller

- 1. understand architecture of microprocessor 8085
- 2. construct simple (ALP) programmes for microprocessor 8085
- 3. understand outline of architecture of advanced microprocessors
- 4. understand the architecture of microcontroller 8051 and can write simple programmes
- 5. understand architecture of 16 bit microcontroller

Department: PHYSICS

Program: M. Sc SY Subject: PHYSICS (A)

Course Code: PH-25

Paper Title: Energy Physics

Unit	Unit	Topics	Unit-wise
Numb	Name		Outcome
er			
Ι	Conventi onal and Non- conventi onal Energy Sources	Man and energy, world production and reserves of commercial energy sources- fossil fuel, hydroelectric power, Nuclear energy ,Indian energy scenario- fossil fuel, hydroelectric power, Nuclear energy power plants, Non-conventional Energy Sources- scope and potential, Concept of Solar constant, Solar intensity on earth's surface, Direct and diffused radiation ,Measurements of Solar Radiations – Moll-Gorezynsky	Will be able to understand conventional and non-conventional energy sources
II	Photovolt aic Conversio n Technolo gies	pyronometer, Sunshine Recorder Crystalline Solar Cell Technology- purification of Silicon conversion of metallurgical grade silicon to semiconductor grade- Czocharlski crystalline silicon formation process, Processes	Will be able to understand how photovoltaic technology used for conversion of energy
		involved in the conversion of silicon wafer to solar cell ,Modular design of solar cell, Power generation through satellite solar power station, Advantages and Disadvantages of solar cell	

III	Photo thermal conversio n technolo gies Biogas	Basic principles of flat plate collector (FPC), elements of flat plate collector, selective coatings and ideal characteristics of absorber plate of flat plate collector, Solar cooker, Hot water system, Solar dryer, Solar pond, Design of central tower receiving system for power generation, Essential elements of Solar Concentrators, parameters and efficiency of solar concentrators, Cylindrical parabolid concentrators (PTC), Compound parabolid concentrators (CPC), Applications of solar concentrators Principles of biogas production, The anaerobic digestion process, types of systems (standard and high rate system) proportion of gases in biogas.	Will be able to understand the technique of conversion of solar energy to thermal energy Will be able to understand biogas in detail
		Design of the plant, process control consideration (temperature, pH), gas production, gas collection, gas utilization, Advantages and Disadvantages of biogas plant.	
V	Fuel Cells	Hydrogen as source of energy, photo electrochemical cell, source of hydrogen, solar hydrogen through electrolysis and photo catalytic process, hydrogen storage, brief discussion of various processes, concept of fuel cell, thermodynamics of fuel cell, merits and demerits of fuel cell.	Will be able to understand fuel cells functioning of clean energy generation

- 1. Will be able to understand conventional and non-conventional energy sources
- 2. Will be able to understand how photovoltaic technology used for conversion of energy
- 3. Will be able to understand the technique of conversion of solar energy to thermal energy
- 4. understand biogas in detail
- 5. understand fuel cells functioning of clean energy generation

Signature of Teacher

OUTCOME OF THE PROGRAMME: Students after completing their post graduation in Physics will

- 1. be eligible to get employment as an asst. professor in private, semigovernment, government institutions after fulfilling the requirements.
- 2. pursue their higher studies in related fields such as M. Phil, Ph. D in the national and international universities depending upon the eligibility conditions of the concerned universities.

3. be able to handle standard and advanced laboratory equipments, modern instrumentation and various techniques to carry out experiments.

- 4. work as entrepreneurs.
 - 6. be eligible to get employment in various industries

- 7. will be eligible to prepare for civil services examinations conducted by state government agencies and central government agencies.
- 8. will be eligible to prepare for SET/NET/PET/GATE etc conducted by various agencies .